





President: Pier Luigi Zinzani Co-President: Michele Cavo

Bologna, Royal Hotel Carlton January 15-17, 2024

**BOLOGNA** BOLOGNA, ROYAL HOTEL CARLTON

Georgetown | Lombardi

COMPREHENSIVE CANCER CENTER

## PRIMARY MEDIASTINAL B-CELL LYMPHOMA

Kieron Dunleavy

Director of Hematology Lombardi Cancer Center Professor of Medicine Georgetown University Washington DC

January 15, 2024



- Advisory Board: Astra Zeneca, Abbvie, Beigene, Bristol Myer Squibb, Amgen, Genentech, Genmab, Janssen, Kymera, Pharmacyclics, Incyte, ONO Pharmaceuticals, Celectar.
- Research Funding: Genentech, ONO Pharmaceuticals, Merck, Kymera.

# **PMBCL DISTINCT CLINICOPATHOLOGIC ENTITY**

• THYMIC B-CELL ORIGIN

•PREDOMINANTLY YOUNG FEMALES (AYA 15-35Y)

LONG-TERM TOXICITIES IMPORTANT

#### •AGGRESSIVE PRESENTATION

•LOCALIZED; BULKY MEDIASTINAL MASS •LESS COMMONLY EXTRA-NODAL SITES (LUNGS, KIDNEYS, LIVER)

#### • HIGH CURE RATE

•HISTORICALLY POOR OUTCOMES FOR RELAPSED/REFRACTORY DISEASE

#### New Drugs in Hematology



#### New Drugs in Hematology

January 15-17, 2024 BOLOGNA, ROYAL HOTEL CARLTON



### SPECTRUM OF MEDIASTINAL LYMPHOMAS



Rosenwald et al. J Exp Medicine 2003

### SPECTRUM OF MEDIASTINAL LYMPHOMAS



Rosenwald et al. J Exp Medicine 2003

#### SPECTRUM OF MEDIASTINAL B-CELL LYMPHOMAS



### **GENE-EXPRESSION BASED ASSAY FOR PMBCL**



FFPE tissue samples

58 genes analyzed (Nanostring Lymph3Cx)

Mottok et al. Blood 2018; Lim. Blood 2018

### **GENE-EXPRESSION BASED ASSAY FOR PMBCL**

FFPE tissue samples

58 genes analyzed (Nanostring Lymph3Cx



Mottok et al. Blood 2018; Lim Noerenberg et al. JCO 2023

### **NOVEL TARGETS IN PMBCL**



Dunleavy and Steidl. Semin in Hem. 2015

### **PMBCL-CURRENT APPROACHES**

- OPTIMAL THERAPY CONTROVERSIAL
- PAUCITY OF PROSPECTIVE DATA/RANDOMIZED STUDIES
- HISTORICALLY APPROACHED LIKE DLBCL
  - R-CHOP 'DE FACTO' STANDARD
  - MEDIASTINAL RT WIDELY USED
- CURE RATE FOR REFRACTORY/PROGRESSIVE DISEASE LOW
  - CRITICAL TO OPTIMIZE UP-FRONT APPROACHES

#### SELECT STUDIES IN PMBCL

| Study                            | Treatment                                      | :                                                   | Study type                      | Outcome                                                                                               |
|----------------------------------|------------------------------------------------|-----------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------|
|                                  | Chemotherapy                                   | RT +/-                                              |                                 |                                                                                                       |
| Savage et al.<br>(2006)          | CHOP/R-CHOP /MACOP-<br>B/VACOP-B               | Variable – included<br>in primary therapy<br>in 39% | Retrospective study<br>N=153    | PFS 69% at 5 years.<br>Only MACOP-B/VACOP-B versus CHOP-like<br>regimens were significantly different |
| Zinzani et al. (2009)            | R-MACOP-B/VACOP-B                              | Yes                                                 | Retrospective study             | DFS 88% at 5 years                                                                                    |
| Rieger et al.<br>(2011)          | CHOP/R-CHOP                                    | Yes – RT intended in 87%                            | Retrospective analysis<br>N=87  | EFS was 78% for R-CHOP and 52% for CHOP at 3 years                                                    |
| Vassilakopoulos et al.<br>(2012) | R-CHOP                                         | Yes – in 76%                                        | Retrospective study<br>N=75     | PFS was 81% at 5 years                                                                                |
| Soumerai et al.<br>(2014)        | R-CHOP                                         | Yes – 77% of<br>responding<br>patients              | Retrospective study<br>N=63     | PFS was 68% at 5 years                                                                                |
| Dunleavy et al. (2013)           | DA-EPOCH-R                                     | No                                                  | Prospective study N=51          | EFS was 93% at 5 years                                                                                |
| Martelli et al.<br>(2014)        | R-MACOP-B, R-VACOP-B, R-<br>CHOP               | Yes – 89%                                           | Prospective study<br>N=125      | PFS is 86% at 5 years                                                                                 |
| Gleeson et al.<br>(2016)         | R-CHOP-14 versus R-CHOP-21                     | Yes – 57%                                           | Retrospective analysis N=50     | PFS was 80% at 5 years                                                                                |
| Roth et al.<br>(2017)            | DA-EPOCH-R                                     | 15% of patients                                     | Retrospective analysis<br>N=153 | EFS was 86% at 3 years                                                                                |
| Hayden et al.<br>(2020)          | R-CHOP                                         | 44% of patients                                     | Retrospective analysis<br>N=159 | TTP and OS: 80% and 89%                                                                               |
| Camus et al.<br>(2021)           | R-ACVBP, R-CHOP-14, R-CHOP-<br>21              | 5%<br>(23% had ASCT)                                | Retrospective analysis          | PFS > 80%; Inferior outcome for R-CHOP-21                                                             |
| Held et al.<br>(2023)            | R-CHOP-21 versus R-CHOP-14<br>(UNFOLDER trial) | Yes - 62%                                           | Prospective analysis            | R-CHOP-14 and R-CHOP-21 equivalent<br>EFS improved following RT                                       |

#### SELECT STUDIES IN PMBCL

| Study                            | Treatment                                      |                                                     | Study type                      | Outcome                                                                                               |
|----------------------------------|------------------------------------------------|-----------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------|
|                                  | Chemotherapy                                   | RT +/-                                              |                                 |                                                                                                       |
| Savage et al.<br>(2006)          | CHOP/R-CHOP /MACOP-<br>B/VACOP-B               | Variable – included<br>in primary therapy<br>in 39% | Retrospective study<br>N=153    | PFS 69% at 5 years.<br>Only MACOP-B/VACOP-B versus CHOP-like<br>regimens were significantly different |
| Zinzani et al. (2009)            | R-MACOP-B/VACOP-B                              | Yes                                                 | Retrospective study             | DFS 88% at 5 years                                                                                    |
| Rieger et al.<br>(2011)          | CHOP/R-CHOP                                    | Yes – RT intended in 87%                            | Retrospective analysis<br>N=87  | EFS was 78% for R-CHOP and 52% for CHOP at 3 years                                                    |
| Vassilakopoulos et al.<br>(2012) | R-CHOP                                         | Yes – in 76%                                        | Retrospective study<br>N=75     | PFS was 81% at 5 years                                                                                |
| Soumerai et al.<br>(2014)        | R-CHOP                                         | Yes – 77% of<br>responding<br>patients              | Retrospective study<br>N=63     | PFS was 68% at 5 years                                                                                |
| Dunleavy et al. (2013)           | DA-EPOCH-R                                     | No                                                  | Prospective study N=51          | EFS was 93% at 5 years                                                                                |
| Martelli et al.<br>(2014)        | R-MACOP-B, R-VACOP-B, R-<br>CHOP               | Yes – 89%                                           | Prospective study<br>N=125      | PFS is 86% at 5 years                                                                                 |
| Gleeson et al.<br>(2016)         | R-CHOP-14 versus R-CHOP-21                     | Yes – 57%                                           | Retrospective analysis N=50     | PFS was 80% at 5 years                                                                                |
| Roth et al.<br>(2017)            | DA-EPOCH-R                                     | 15% of patients                                     | Retrospective analysis<br>N=153 | EFS was 86% at 3 years                                                                                |
| Hayden et al.<br>(2020)          | R-CHOP                                         | 44% of patients                                     | Retrospective analysis<br>N=159 | TTP and OS: 80% and 89%                                                                               |
| Camus et al.<br>(2021)           | R-ACVBP, R-CHOP-14, R-CHOP-<br>21              | 5%<br>(23% had ASCT)                                | Retrospective analysis          | PFS > 80%; Inferior outcome for R-CHOP-21                                                             |
| Held et al.<br>(2023)            | R-CHOP-21 versus R-CHOP-14<br>(UNFOLDER trial) | Yes – 62%                                           | Prospective analysis            | R-CHOP-14 and R-CHOP-21 equivalent<br>EFS improved following RT                                       |

#### **EARLY STUDIES: INTENSIVE VS STANDARD REGIMENS**

Induction chemotherapy stategies for primary mediastinal large B-cell lymphoma with sclerosis: a retrospective multinational study on 426 previously untreated patients

PIER LUIGI ZINZANI, MAURIZIO MARTELLI, MARILENA BERTINI, ALESSANDRO M. GIANNI, LILIANA DEVIZZI, MASSIMO FEDERICO, GERASSIMOS PANGALIS, JORG MICHELS, EMANUELE ZUCCA, MARIA CANTONETTI, SERGIO CORTELAZZO, ANDREW WOTHERSPOON, ANDRÉS J.M. FERRERI, FRANCESCO ZAJA, FRANCESCO LAURIA, AMALIA DE RENZO, MARINA A. LIBERATI, BRUNANGELO FALINI, MONICA BALZAROTTI, ANTONELLO CALDERONI, ALFONSO ZACCARIA, PATRIZIA GENTILINI, PIER PAOLO FATTORI, ENZO PAVONE, MARIA K. ANGELOPOULOU, LAPO ALINARI, MULA BRUGIATELLI, NICOLA DI RENZO, FRANCESCA BONIFAZI, STEFANO A. PILERI, FRANCO CAVALLI FOR THE INTERNATIONAL EXTRANODAL LYMPHOMA STUDY GROUP (IELSG)

Correspondence: Pier Luigi Zinzani, M.D., Istituto di Ematologia e Oncologia Medica "Seràgnoli" Policilnico S.Orsola, via Massarenti 9,







Figure 4. PFS curves of the three main chemotherapy subgroups.

Zinzani et al. Haematologica. 2002; 87:1258-1264

### **DA-EPOCH-R IN PMBCL**



Dunleavy et al. NEJM 2013

Melani et al. Haematologica 2018

Roth-Guiliano et al. Br J Haem 2019

### LYSA STUDY – 313 PATIENTS WITH PMBCL



Camus et al. Blood Advances 2021

### PET ADAPTED APPROACH USING CHOP-BASED THERAPY



Hayden et al, Blood 2020



Davies et al, Haematological Oncology (Proc Lugano meeting) 2023

Martelli et al. JCO 2014 (IELSG 26)



Zucca et al. ASCO 2023

Martelli et al. JCO 2014 (IELSG 26)



### IELSG – 37 : Preliminary Analysis

IELSG37 preliminary analysis: Complete metabolic response and risk factor rates by induction regimens in PMBCL

| Regimen                   | Median age<br>years (IQR) | Age >40<br>years | CR rate<br>(DS1-3) | DS5   | ECOG<br>PS>1 | Bulk<br>>10 cm | High<br>LDH | Extranodal<br>infiltration | R-IPI<br>very good<br>risk | Median MTV<br>ml (IQR) |
|---------------------------|---------------------------|------------------|--------------------|-------|--------------|----------------|-------------|----------------------------|----------------------------|------------------------|
| N analyzed                | 545                       | 545              | 526                | 526   | 533          | 536            | 499         | 534                        | 495                        | 486                    |
| R-CHOP21                  | 32 (27-45)                | 34%              | 53%                | 25%   | 7%           | 65%            | 75%         | 24%                        | 21%                        | 316 (186-482)          |
| R-CHOP14                  | 37 (30-47)                | 45%              | 56%                | 7%    | 8%           | 78%            | 67%         | 36%                        | 30%                        | 360 (224-593)          |
| R-V/MACOP-B               | 34 (28-45)                | 38%              | 54%                | 10%   | 12%          | 70%            | 69%         | 36%                        | 24%                        | 320 (202-498)          |
| DA-EPOCH-R                | 33.5 (26-39)              | 25%              | 65%                | 6%    | 10%          | 68%            | 70%         | 28%                        | 22%                        | 333 (204-521)          |
| Other, intensive          | 33 (29-38)                | 22%              | 60%                | 7%    | 19%          | 64%            | 78%         | 33%                        | 22%                        | 280 (172-443)          |
| P-value<br>(Fisher exact) | 0.220                     | 0.006            | 0.546              | 0.001 | 0.231        | 0.150          | 0.568       | 0.262                      | 0.488                      | 0.521                  |

Martelli et al, Haematological Oncology (Proc Lugano meeting) 2021

### IELSG – 37 : Preliminary Analysis

IELSG37 preliminary analysis: Complete metabolic response and risk factor rates by induction regimens in PMBCL

| Regimen                   | Median age<br>years (IQR) | Age >40<br>years | CR rate<br>(DS1-3) | DS5   | ECOG<br>PS>1 | Bulk<br>>10 cm | High<br>LDH | Extranodal<br>infiltration | R-IPI<br>very good<br>risk | Median MTV<br>ml (IQR) |
|---------------------------|---------------------------|------------------|--------------------|-------|--------------|----------------|-------------|----------------------------|----------------------------|------------------------|
| N analyzed                | 545                       | 545              | 526                | 526   | 533          | 536            | 499         | 534                        | 495                        | 486                    |
| R-CHOP21                  | 32 (27-45)                | 34%              | 53%                | 25%   | 7%           | 65%            | 75%         | 24%                        | 21%                        | 316 (186-482)          |
| R-CHOP14                  | 37 (30-47)                | 45%              | 56%                | 7%    | 8%           | 78%            | 67%         | 36%                        | 30%                        | 360 (224-593)          |
| R-V/MACOP-B               | 34 (28-45)                | 38%              | 54%                | 10%   | 12%          | 70%            | 69%         | 36%                        | 24%                        | 320 (202-498)          |
| DA-EPOCH-R                | 33.5 (26-39)              | 25%              | 65%                | 6%    | 10%          | 68%            | 70%         | 28%                        | 22%                        | 333 (204-521)          |
| Other, intensive          | 33 (29-38)                | 22%              | 60%                | 7%    | 19%          | 64%            | 78%         | 33%                        | 22%                        | 280 (172-443)          |
| P-value<br>(Fisher exact) | 0.220                     | 0.006            | 0.546              | 0.001 | 0.231        | 0.150          | 0.568       | 0.262                      | 0.488                      | 0.521                  |

Martelli et al, Haematological Oncology (Proc Lugano meeting) 2021

### IELSG – 37 : Preliminary Analysis

IELSG37 preliminary analysis: Complete metabolic response and risk factor rates by induction regimens in PMBCL

| Regimen                   | Median age<br>years (IQR) | Age >40<br>years | CR rate<br>(DS1-3) | DS5   | ECOG<br>PS>1 | Bulk<br>>10 cm | High<br>LDH | Extranodal<br>infiltration | R-IPI<br>very good<br>risk | Median MTV<br>ml (IQR) |
|---------------------------|---------------------------|------------------|--------------------|-------|--------------|----------------|-------------|----------------------------|----------------------------|------------------------|
| N analyzed                | 545                       | 545              | 526                | 526   | 533          | 536            | 499         | 534                        | 495                        | 486                    |
| R-CHOP21                  | 32 (27-45)                | 34%              | 53%                | 25%   | 7%           | 65%            | 75%         | 24%                        | 21%                        | 316 (186-482)          |
| R-CHOP14                  | 37 (30-47)                | 45%              | 56%                | 7%    | 8%           | 78%            | 67%         | 36%                        | 30%                        | 360 (224-593)          |
| R-V/MACOP-B               | 34 (28-45)                | 38%              | 54%                | 10%   | 12%          | 70%            | 69%         | 36%                        | 24%                        | 320 (202-498)          |
| DA-EPOCH-R                | 33.5 (26-39)              | 25%              | 65%                | 6%    | 10%          | 68%            | 70%         | 28%                        | 22%                        | 333 (204-521)          |
| Other, intensive          | 33 (29-38)                | 22%              | 60%                | 7%    | 19%          | 64%            | 78%         | 33%                        | 22%                        | 280 (172-443)          |
| P-value<br>(Fisher exact) | 0.220                     | 0.006            | 0.546              | 0.001 | 0.231        | 0.150          | 0.568       | 0.262                      | 0.488                      | 0.521                  |

Martelli et al, Haematological Oncology (Proc Lugano meeting) 2021

#### Improved Survival Outcomes for Intensive versus Standard Chemoimmunotherapy in Primary Mediastinal B-cell Lymphoma: A Meta-Analysis of 4068 Patients

Michael R. Cook<sup>1</sup>, Lacey Williams<sup>1</sup>, C. Scott Dorris<sup>2</sup>, Yutong Luo<sup>3</sup>, Kepher Makambi<sup>3</sup>, Paul Kolm<sup>3</sup>, Kieron Dunleavy<sup>1</sup> 1. Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington D.C

2. Dahlgren Memorial Library, Georgetown University; 3. Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University

Georgetown | Lombardi



Cook et al. Haematologica 2023

#### Improved Survival Outcomes for Intensive versus Standard Chemoimmunotherapy in Primary Mediastinal B-cell Lymphoma: A Meta-Analysis of 4068 Patients

<u>Michael R. Cook</u><sup>1</sup>, Lacey Williams<sup>1</sup>, C. Scott Dorris<sup>2</sup>, Yutong Luo<sup>3</sup>, Kepher Makambi<sup>3</sup>, Paul Kolm<sup>3</sup>, Kieron Dunleavy<sup>1</sup> 1. Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington D.C

2. Dahlgren Memorial Library, Georgetown University; 3. Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University

Georgetown | Lombardi



Cook et al. Haematologica 2023

### **EOT-PET IMAGING IN PMBCL**



### **EOT-PET IMAGING IN PMBCL**

| Lymphoma Status                       |            | D                               | Deauville Score                 |            |            |  |  |
|---------------------------------------|------------|---------------------------------|---------------------------------|------------|------------|--|--|
| (N = 83 total with EOT FDG-PET)       |            | <u>Negative</u><br>(57/83, 69%) | <u>Positive</u><br>(26/83, 31%) |            |            |  |  |
|                                       | 1<br>(30%) | 2<br>(23%)                      | 3<br>(16%)                      | 4<br>(22%) | 5<br>(10%) |  |  |
| No treatment failure-<br>no. patients | 25*        | 18                              | 13                              | 17*        | 4          |  |  |
| Treatment failure-<br>no. patients    | 0          | 1                               | 0                               | 1          | 4          |  |  |

Melani et al. Haematologica 2018

### **EVOLUTION OF PET FINDINGS IN PMBCL**



Melani et al. Haematologica 2018

### **NEW TREATMENTS IN PMBCL**



### **RATIONALE FOR CHECKPOINT INHIBITION IN PMBCL**

#### Biologic features:

- 9p24.1 alterations PD-L1/2 upregulation
- Microenviroment similar to Hodgkin lymphoma
- <u>Clinical Experience:</u>
  - Pembrolizumab: monoclonal anti-PD-1 Ab
  - Studied in adults with relapsed/refractory PMBCL in phase I/II trials
  - Association between PD-L1 expression and outcome



Zinzani et al, Blood, 2017 Armande et al, JCO 2019

### NIVOLUMAB IN PMBCL

Nivolumab Combined With Brentuximab Vedotin for Relapsed/Refractory Primary Mediastinal Large B-Cell Lymphoma: Efficacy and Safety From the Phase II CheckMate 436 Study



Zinzani et al, JCO 2019 Zinzani et al. Blood 2017

### **ANHL 1931 - SCHEMA**



NC

#### NCI – Use of CD19-CAR.28z T cells for Large cell Lymphoma

|              |                         | Number of        | Infused             | Response       |
|--------------|-------------------------|------------------|---------------------|----------------|
|              | Lymphoma                | prior            | CAR+ T              | (duration in   |
| Patient 1997 | type                    | <u>therapies</u> | <u>cells/kg</u>     | <u>months)</u> |
| 1            | PMBCL                   | 4                | 5x10 <sup>6</sup>   | CR (35+)       |
| 2            | PMBCL                   | 3                | 2.5x10 <sup>6</sup> | NE, death      |
| 3            | DLBCL, NOS              | 5                | 2.5x10 <sup>6</sup> | CR (25+)       |
| 4            | PMBCL                   | 10               | 2.5x10 <sup>6</sup> | CR (21+)       |
| 5            | PMBCL                   | 3                | 2.5x10 <sup>6</sup> | SD (1)         |
| 6            | $CLL \rightarrow DLBCL$ | 13               | 1x10 <sup>6</sup>   | PR (1)         |
| 7            | DLBCL, NOS              | 3                | 1x10 <sup>6</sup>   | NE             |
| 8            | DLBCL, NOS              | 2                | 1x10 <sup>6</sup>   | CR (6)         |
| 9            | DLBCL, NOS              | 3                | 1x10 <sup>6</sup>   | CR (17+)       |
|              |                         |                  |                     |                |

**DEFINED LYMPHODEPLETING REGIMEN WITH IL-2:** CY 60 mg/kg for 2 doses and FLU 25 mg/m<sup>2</sup> for 5 doses

Kochenderfer et al, JCO 2015

#### NCI – Use of CD19-CAR.28z T cells for Large cell Lymphoma

| Patient | Lymphoma<br><u>type</u> | Number of<br>prior<br><u>therapies</u> | Infused<br>CAR+ T<br><u>cells/kg</u> | Response<br>(duration in<br><u>months)</u> |
|---------|-------------------------|----------------------------------------|--------------------------------------|--------------------------------------------|
| 1       | PMBCL                   | 4                                      | 5x10 <sup>6</sup>                    | CR (35+)                                   |
| 2       | PMBCL                   | 3                                      | 2.5x10 <sup>6</sup>                  | NE, death                                  |
| 3       | DLBCL, NOS              | 5                                      | 2.5x10 <sup>6</sup>                  | CR (25+)                                   |
| 4       | PMBCL                   | 10                                     | 2.5x10 <sup>6</sup>                  | CR (21+)                                   |
| 5       | PMBCL                   | 3                                      | 2.5x10 <sup>6</sup>                  | SD (1)                                     |
| 6       | $CLL \rightarrow DLBCL$ | 13                                     | 1x10 <sup>6</sup>                    | PR (1)                                     |
| 7       | DLBCL, NOS              | 3                                      | 1x10 <sup>6</sup>                    | NE                                         |
| 8       | DLBCL, NOS              | 2                                      | 1x10 <sup>6</sup>                    | CR (6)                                     |
| 9       | DLBCL, NOS              | 3                                      | 1x10 <sup>6</sup>                    | CR (17+)                                   |

**DEFINED LYMPHODEPLETING REGIMEN WITH IL-2:** CY 60 mg/kg for 2 doses and FLU 25 mg/m<sup>2</sup> for 5 doses

Kochenderfer et al, JCO 2015

#### NCI – Use of CD19-CAR.28z T cells for Large cell Lymphoma



Cochenderfer et al. Crombie et al. Blood Advances 2021



















#### New Drugs in Hematology

### **PMBCL: CONCLUSIONS**

- WHAT IS OPTIMAL REGIMEN FOR PMBCL?
  - ARE DOSE-INTENSIVE APPROACHES SUPERIOR?
  - OBVIATING NEED FOR RT
- WHICH EOT + PATIENTS NEED RT?
  - DOES THIS DEPEND ON UP-FRONT REGIMEN?
  - NEED FOR ALTERNATIVE EOT RESPONSE ASSESSMENT TOOLS
- NOVEL AGENTS
  - ROLE OF ANTI-CD19 CAR-T/BITES/OTHER NOVEL AGENTS
  - ROLE OF IMMUNE CHECKPOINT INHIBITORS
    - IN UPFRONT TREATMENT? (ONGOING US COOPERATIVE GROUP STUDY)
    - FOR SELECT BIOLOGICAL SUBTYPES (9P24/PD-L1 STATUS)

# Questions

出于

### New Drugs in Heroattoom E OF PEDIATRIC PATIENTS WITH RMBC 2024



Knorr et al. Haematologica 2021

#### New Drugs in Hematology

#### Disclosures of NAME SURNAME

| Company name | Research support | Employee | Consultant | Stockholder | Speakers bureau | Advisory board | Other |
|--------------|------------------|----------|------------|-------------|-----------------|----------------|-------|
|              |                  |          |            |             |                 |                |       |
|              |                  |          |            |             |                 |                |       |
|              |                  |          |            |             |                 |                |       |
|              |                  |          |            |             |                 |                |       |
|              |                  |          |            |             |                 |                |       |
|              |                  |          |            |             |                 |                |       |
|              |                  |          |            |             |                 |                |       |
|              |                  |          |            |             |                 |                |       |